Investigating a back door mechanism of actin phosphate release by steered molecular dynamics.

نویسندگان

  • W Wriggers
  • K Schulten
چکیده

In actin-based cell motility, phosphate (Pi) release after ATP hydrolysis is an essential biochemical process, but the actual pathway of Pi separation from actin is not well understood. We report a series of molecular dynamics simulations that induce the dissociation of Pi from actin. After cleavage from ATP, the singly protonated phosphate (HPO4(2-)) rotates about the ADP-associated Ca2+ ion, turning away from the negatively charged ADP towards the putative exit near His73. To reveal the microscopic processes underlying the release of Pi, adhesion forces were measured when pulling the substrate out of its binding pocket. The results suggest that the separation from the divalent cation is the rate-limiting step in Pi release. Protonation of HPO4(2-) to H2PO4- lowers the electrostatic barrier during Pi liberation from the ion. The simulations revealed a propensity of charged His73+ to form a salt bridge with HPO4(2-), but not with H2PO4-. His73 stabilizes HPO4(2-) and, thereby, inhibits rapid Pi release from actin. Arg177 remains attached to Pi along the putative back door pathway, suggesting a shuttle function that facilitates the transport of Pi to a binding site on the protein surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics analysis of structural factors influencing back door pi release in myosin.

The back door has been proposed to be an exit pathway from the myosin active site for phosphate (P(i)) generated by adenosine 5'-triphosphate hydrolysis. We used molecular dynamics simulations to investigate the interaction of P(i) with the back door and the plausibility of P(i) release via this route. Molecular dynamics simulations were performed on the Dictyostelium motor domain with bound Mg...

متن کامل

The effect of temperature on the binding affinity of Remdesivir and RdRp enzyme of SARS-COV-2 virus using steered molecular dynamics simulation

The fatal SARS-COV-2 virus appeared in China at the end of 2019 for the first time. This virus has similar sequence with SARS-COV in 2002, but its infection is very high rate. On the other hand, SARS-COV-2 is a RNA virus and requires RNA-dependent RNA polymerase (RdRp) to transcribe its viral genome. Due to the availability of the active site of this enzyme, an effective treatment is targeting ...

متن کامل

Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations

Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...

متن کامل

Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations

Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...

متن کامل

Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex.

To decrypt the mechanistic basis of myosin motor function, it is essential to probe the conformational changes in actomyosin with high spatial and temporal resolutions. In a computational effort to meet this challenge, we have performed a multiscale modeling of the allosteric couplings and transition pathway of actomyosin complex by combining coarse-grained modeling of the entire complex with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proteins

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 1999